Problema #12 – Inegalitatea Cauchy-Buniakovski-Schwarz

Să se demonstreze:

22<1+2+...+20212021506\frac{\sqrt[]{2}}{2}<\frac{\sqrt[]{1}+\sqrt[]{2}+...+\sqrt[]{2021}}{2021}\leq506

Demonstrăm întai a doua inegalitate:

1+2++20212021506\frac{\sqrt[]{1}+\sqrt[]{2}+…+\sqrt[]{2021}}{2021}\leq506

Din inegalitatea Cauchy-Buniakovski-Schwarz știm că:

(a1b1+a2b2+...+anbn)2  (a12+a22+...+an2)  (b12+b22+...+bn2)(a_{1}\cdot b_{1}+a_{2}\cdot b_{2}+...+a_{n}\cdot b_{n})^2\leq\\\;\\\leq(a_{1}^2+a_{2}^2+...+a_{n}^2)\cdot\\\;\\\cdot(b_{1}^2+ b_{2}^2+...+ b_{n}^2)

Dacă bi este 1 pentru oricare i inegalitatea devine:

(a11+a21+...+an1)2  (a12+a22+...+an2)  (12+12+...+12)n          (a1+a2+...+an)2  n(a12+a22+...+an2)(a_{1}\cdot 1+a_{2}\cdot1+...+a_{n}\cdot 1)^2\leq\\\;\\\leq(a_{1}^2+a_{2}^2+...+a_{n}^2)\cdot\\\;\\\cdot\underbrace{(1^2+ 1^2+...+ 1^2)}_{n} \implies\\\;\\ \implies (a_{1}+a_{2}+...+a_{n})^2\leq\\\;\\\leq n \cdot(a_{1}^2+a_{2}^2+...+a_{n}^2)
Fie    S=1+2++2021          S22021((1)2+(2)2+...+(2021)2)          S22021(1+2+...+2021)cf  Gauss  202120222          S22021202120222          S2202121011          S20211011                            1011<506}            S2021<506          1+2++20212021<506Fie\;\; S=\sqrt[]{1}+\sqrt[]{2}+…+\sqrt[]{2021} \implies \\\;\\ \implies S^2 \leq 2021 \cdot((\sqrt[]{1})^2+(\sqrt[]{2})^2+...+(\sqrt[]{2021})^2) \implies \\\;\\ \implies S^2 \leq 2021 \cdot \underbrace{ (1+2+...+2021)}_{cf\;Gauss\;\frac{2021\cdot 2022}{2}} \implies \\\;\\\\ \implies S^2 \leq2021 \cdot \frac{2021\cdot 2022}{2}\implies \\\;\\\\ \implies S^2 \leq2021^2 \cdot1011 \implies \\\;\\ \left. \begin{array}{ll} \implies S \leq2021 \cdot\sqrt[]{1011}\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\sqrt[]{1011}<506\end{array} \right \} \implies\;\\\; \\ \implies \frac{S}{2021}<506 \implies \\\;\\\\ \implies\frac{\sqrt[]{1}+\sqrt[]{2}+…+\sqrt[]{2021} }{2021}<506

Demonstrăm prima inegalitate:

22<1+2+...+20212021          20212<1+2+...+20212          20212<2(1+2+...+2021)2          2021<2(1+2+...+2021)>12021           2021<22021  (A)  q.e.d\frac{\sqrt[]{2}}{2}<\frac{\sqrt[]{1}+\sqrt[]{2}+...+\sqrt[]{2021}}{2021} \iff \\\;\\ \iff \frac{2021}{2}<\frac{\sqrt[]{1}+\sqrt[]{2}+...+\sqrt[]{2021}}{\sqrt[]{2}} \iff \\\;\\ \iff \frac{2021}{2}<\frac{\sqrt[]{2} \cdot(\sqrt[]{1}+\cdot\sqrt[]{2}+...+\cdot\sqrt[]{2021})}{2} \iff \\\;\\ \iff 2021 < \sqrt[]{2} \cdot\underbrace{(\sqrt[]{1}+\cdot\sqrt[]{2}+...+\cdot\sqrt[]{2021})}_{>1\cdot2021} \iff \\\;\\\ \iff 2021<\sqrt[]{2}\cdot 2021 \;(A)\; q.e.d

Pe aceeași temă