Problemă rezolvată dintre subiectele propuse pentru clasa a IX-a la ONGM 2020-2021.
Enunț
Suma elementelor mulțimii P :
P= \left\{ n \in \mathbf{Z} \ \Bigg | \ \dfrac{2n^2+n+3}{2n+1} \in \mathbf{Z} \right\}
este egală cu:
A. -4 B. -3 C. -2 D. 0 E. 1
Rezolvare
\dfrac{2n^2+n+3}{2n+1} =\dfrac{n\cdot(2n+1)+3}{2n+1} = \\\;\\ = \dfrac{n\cdot\cancel{(2n+1)}}{\cancel{2n+1}} + \dfrac{3}{2n+1} = n + \dfrac{3}{2n+1}\\\;\\
\left. \begin{array}{ll}
\dfrac{2n^2+n+3}{2n+1} \in \mathbf{Z} \\\;\\
n \in \mathbf{Z}
\end{array}
\right \} \implies \\\;\\\ \implies \dfrac{3}{2n+1} \in \mathbf{Z} \Leftrightarrow \\\;\\\
\left. \begin{array}{ll}
\Leftrightarrow 2n + 1 \in D_3\\\;\\
D_3 = \left\{-3,-1,1,3\right\}
\end{array}
\right \}\implies \\\;\\\ \implies \left \{ \begin{array}{ll}
2n + 1 = -3 \\
sau\\
2n + 1 = -1\\
sau\\
2n + 1 = 1\\
sau\\
2n + 1 = 3
\end{array}
\right . \implies \\\;\\\ \implies \left \{ \begin{array}{ll}
2n = -4 \\
sau\\
2n = -2\\
sau\\
2n = 0\\
sau\\
2n = 2
\end{array}
\right . \implies \\\;\\\ \implies \left \{ \begin{array}{ll}
n = -2 \\
sau\\
n = -1\\
sau\\
n = 0\\
sau\\
n = 1
\end{array}
\right . \implies \newline \\\;\\\ \implies P=\left\{-2,-1,0,1\right\}
Deci suma elementelor lui P este -2 + (-1) + 0 + 1 care este -2 iar răspunsul corect este C.
[the_ad_group id=”102″]
